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Abstract-In order to determine the state of stress of a thin plate under transverse elastic bending, it is
necessary to have the curyature value at each and every point of the bent plate. Most experimental methods
yield deftection as the primary data which have to be differentiated twice for the stress calculations. Since
numerical differentiation is an inherently inaccurate process, it should be avoided if at all possible. In this
paper a method is devised whereby either the first derivative (slope) or the second derivative (curvature) of
the plate deftection is obtained directly in the form of slope or curvature contour fringes, thus reducing or
eliminating the necessity of numerical differentiation. Examples to both static and dynamic problems are
presented.

INTRODUCTION

Experimental full-field methods of solving plate bending problems may be classified into two
categories: one that measures the interior stress (or its analog) directly, and one that measures
(either directly or indirectly) the surface deformation. Examples of the first type are the
photoelastic methods such as that of Goodier et al.[l] and Drucker [2]. Techniques of the
second group may be further divided into three types: those that measure deflection[3-12],
slope [13-22] and curvature[23-26], respectively, of the deformed plate. Among the methods of
deflection measurement, the simplest is perhaps the shadow Moire method[3-7]. Among the
many slope measuring techniques the most popular and widely used is the Ligtenberg reflection
Moire method[l3] and its derivatives[l4-17]. Methods that yield curvature directly are limited
in number, and all but one employ the superposition technique to give curvature contours. The
one by Chiang and Bailangadi[26] uses a method of optical spatial filtering.

From the point of view of error involved, a curvature measurement method is preferred
over a slope measurement method, and which in tum is preferred over a deflection measure
ment method. This is so because of the ever present and oftentimes large errors associated with
numerical differentiation of experimental data. In this paper we offer an optical method which
can yield either slope or curvature contours directly, thereby eliminating partially or totally the
differentiation error. It should perhaps be emphasized that with the proposed method the
curvature contours are obtained without either double exposure, superposition or optical
processing. As a result the method can be directly applied to wave propagation problems.

Basically the method employs a relatively coarse grating to obstruct a beam of light that is
reflected from a mirrored surface of a plate model. In a way it is similar to the methods of
Ronchi who uses gratings to test mirrors and lenses and who has summarized these methods in
a recent article [27]. However the methods presented here are different and mainly for the
purpose of studying thin plates under transverse bending.

THEORY OF SLOPE CONTOURING

The optical arrangement of the method is as shown in Fig. 1. The mirrored surface of a plate
model p is illuminated by a beam of parallel light with angle ax from the normal in the x-z
plane. (The inclination of the beam in the y-z plane is immaterial so long as it is small.) The
reflected light rays are collected by a field lens L and form the image of the model plate at plane
1. At the focal plane of the field lens, an amplitude grating of pitch P is installed with its lines
normal to the x-axis. Before subject to transverse bending the plate is assumed to be flat. Thus
all the reflected light rays are converged into a point Gens aberration is assumed to be
negligible). Thus the image field is either dark or bright or somewhere in between depending
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Fig. 1, Optical arrangement of the method.
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upon where on the grating the light is focused. After deformation of the plate the light rays will
no longer concentrate into a point. Rather they will be spread out casting shadows of the grating
lines on the image plane. And it will be shown that these shadows (hereafter referred to as the
shadowgram) are contour fringes of slope of the deformed (bent) plate along the direction
normal to the grating lines.

As shown in Fig. 1, the object and image distances are denoted by af and bf, respeetively,
where / is the focal length of the field lens. A ray that impinges upon the mirrored plate surface
with angle ax will be returned with an angle ax +2<px where <Px is the local slope along the
x-axis of the deflected plate. The deflection is assumed to be small such that the spatial position
of a point before and after deformation may be assumed stationary. The reflected ray is further
bent by the field lens into angle {3, intersecting the grating at a distance ~, and reaching the
image plane at distance u, both measured from the optical axis of the system. Ris seen from the
figure that ~ ::: f tan (ax +2<px). Denoting ~o::: ~ when 4>x ::: 0, one has ~o ::: / tan ax. The distance
scanned by the light ray due to the presence of !Px is then

tan 2<px sec2 ax
~g ::: ~ - go ::: f tan (ax +2<px) - f tan ax ::: f 1 t t 2.1.'- an ax an 'f'x

If 2<px is small and tan ax is of order one or less, eqn (1) may be approximated by

1)

2)

Denoting n as the parameter of individual grating lines as shown, with zero coinciding with, Ie
optical axis and positive numbers downward; and with awlax ::: <Px. one has

oW (n - no)p 2 ow Np cos2 ax
ax ::: 2/ cos ax or ax == 2/ 3)

where N is the fringe order, and p pitch of the grating. It is seen that the fringes (i.e. Ie
shadow of the grating lines) are contours of slope.

The grating used for slope contouring should be fairly coarse. In· most expetime ts
performed in this study the grating density was about 4lpcm.

THEORY OF CURVATURE CONTOURING

The optical arrangement for contouring curvature is identical to that for slope co.. "11 19

except that finer grating is used. The grating should be fine enough that the effect ot :ht
diffraction is observable at the image plane. As schematically shown in Fig. 2 when a beam of
light passes through a fine grating it is diffracted into many beams (diftraction orders) and the
angle of deviation between any two neighboring orders is given by 8 ::: Alp cos {3, where lis the
wavelength. The result of diffraction is that there are multiple images at the image plane with a
relative shift between two neighboring images given by

_ _ _ sec2 {Han 8
~u - z tan ({3 +8) tan {3 - z 1- tan {3 tan 8' (4)
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Fig. 2. Image shifting due to diffraction.
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For moderately fine gratings (line density in the range of 2-4Ipmm) the diffraction angle is quite
small; one may assume that tan () - (). Furthermore if tan (3 is of order one or less, eqn (4) can
be simplified into

(5)

If the grating used is such that it only has two equal intensity first order diffractions, one
may express the intensity variation of the 0 and ± 1 order images of the grating as

1
10(u) = 2[1 +cos 2n(u)-7T),

1
I I(u) = 2'Y1[1 +cos 2n(u +aU)-7T),

I
1-1(u) = 2'Y1[1 +cos 2n(u - aU)1T),

(6)

(7)

(8)

where 'YI = 11/10 = Ltflo, and n the grating line parameter as before. Since all these three
shadowgrams are superimposed together, the total intensity is given by the sum, i.e.

1IT (u) = 2{l +2Y1 +cos 2n1T + 'YI[COS 2(n +an)1T +cos 2(n - an)1TJ}

1
= 2{1 +2'Y1 +cos 2n1T[1 +2'Y1 cos 2(an)1T]}. (9)

In the above equation the following substitution has been made: n(u ± au) = n ± an,
where an - (au)(iJn/iJu). This equation depicts essentially the pattern of the zero order
shadowgram of slope fringes modulated by another sinusoidal enveloping fringe of period an.
For simplicity it shall be assumed that 'Y1 = 1/2. (This is made so as to bring out the physics of
the method. 'YI of different values are treated in a report[31); and it is shown that the basic
conclusion is not altered except the visibility of the curvature fringes.) Thus one has

1
h(u) = 2{2 +cos 2mT[1 +cos 2(an)1T]}.

For an = 0, ± 1, ±2, ... , eqn (10) reduces to

h(u)= 1+cos2n1T

(10)

(11)

which is nothing but the zeroth order shadowgram of the slope fringe with twice the intensity.
But for an =1/2,3/2,5/2, ... , eqn (10) reduces to IT (u) =1, which means that the slope fringe
has disappeared. In between, the basic pattern of eqn (11) still prevails but with reduced



254 F, p, CHIANG and T, Y, KAo

visibility. Thus the enveloping fringes manifest themselves in terms of the visibility of the
original slope fringes, ranging from one as given by eqn (11) to zero given by !r{u)::= 1. Actually
these enveloping fringes are essentially Moire fringes resulted from the superposition of all
orders of the shadowgram of slope fringes.

The meaning of these enveloping fringes may be interpreted as follows. They represent the
difference of slope fringe values (as given by an) over a shifted distance au. Thus from eqns (3)
and (5) one has

b.</>~ </>x(u +Au)-</>Au)
b.u ::= b.u

anp2 cos2 ax cos3 f3
2fzA

n{u +Au) - n(u) p cos2 ax
Au 2/

(12)

Noting that z = (b -1)f, and the magnification of the system being M == ulx ::= bla ::= (b -1) one
has

(13)

and eqn (12) is reduced to

(14)

where N' = an is the new order of the enveloping fringes. If the field lens has a long focal
length and small aperture (i.e. small flnumber) the angle f3 may be approximated by ax. Thus
eqn (14) is further simplified to

(15)

One has then the enveloping (Moire) fringes as contours of curvature.
In order to obtain the stress information one needs, of course, the curvature values along

two perpendicular directions and the twist. For the fringe pattern to represent the curvature
along y-direction one simply turns the grating 90°; the field equation is identical to eqn (15) with
a2wfay2replacing a2wfax2.

The twist may be calculated by obtaining a tbird curvature value for a direction s which
makes an angle 8 from the x-axis, and using the following equation

(16)

Alternatively one may choose to use curvature fringe patterns along any three nonparallel
directions and use them for the calculation of principal curvatures.

EXPERIMENTAL VERIFICATIONS

In the experiments performed the field lens used had a diameter of 12.7 em and a focal
length of 61 em. A low power He-Ne laser was used as light course. (Since there is no
coherence requirement of the light beam a thermal source with monochromatic filter could also
be used.) The magnification was chosen to be one-to-one (i.e. a = b ::= 2). The angle ax was
arranged to be zero so that the field equations (3) and (15) are reduced to, respectively

oW Np (17)-
2/ax

and
a2w N'p2

(18)ax2
::= 2AF'
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In all the experiments the models were made of Plexiglas whose surfaces were ftat enough
to be considered "mirrorlike". The back surface of the model was blackened with paint. Two
examples are presented for the slope contouring method: a cantilever beam (6.3 mm x 6.3 mm x
7.6cm) under endload and a clamped circular plate (dia= 7.6cm, thickness = 2mm) under
centrally applied concentrated load. The grating used for· the experiments had a density of
3.94Ipcm. The resulting fringe patterns and the comparison between experiment and theory of
the two examples are shown in Figs. 3 and 4, respectively. The degree of agreement is quite
good in both cases.

The same two problems were also used for the demonstration of the curvature contouring
method. The experimental procedure was identical to that of slope contouring experiments
except that finer gratings were substituted (3.4lpmm for the cantilever beam and 2lpmm for the
circular plate). The superposition of multiple images of the slope shadowgram created the Moire
enveloping fringes of curvature. The patterns are shown in Figs. 5 and 6, respectively, together
with the comparison between experiment and theory. While the curvature fringes of the circular
plate are quite distinct, they are a bit hazy in the case of cantilever beam. This is mainly due to
the intrinsic property of Moire fringes that the visibility of rotational mismatch fringes is always
better than that of linear mismatch ones except when the element gratings are so fine that the
individual lines are not resolved [30]. The degree of agreement between theory and experiment
is reasonable but not as good as that in the slope contouring method. This is attributed to the
approximation used in deriving eqn (15) and the uncertainty involved in locating the center of
curvature fringes.

Since the problem of cantilever beam is one dimensional and circular plate axially sym~

metric, only one pattern of either slope fringes or curvature fringes is sufficient to yield the
stress information completely. In general, however, at least two patterns are needed. As an
example the slope and curvature contours along both the x and y directions of a clamped
triangular plate under uniform pressure were obtained and are shown in Fig. 7.

APPLICATION TO FLEXUAL WAVE PROPAGATION

The proposed method can also be used for mapping propagating slope and curvature fringes.
For nonrepeatable events a high speed camera is necessary. One could either use the optical
arrangement of Fig. 1 as is and obtain the propagating slope or curvature fringes along one
direction; from which the deftection surface can be obtained by integration and stress in
formation can then be derived from the deftection data. Or, one could modify the optical
arrangement by inserting beam splitters after the field lens and using different gratings to
generate slope or curvature fringes along different directions. For repeatable events one can
obtain all the necessary information sequentially. For this a pulsed light source is necessary,
whose pulse duration is short enough to "freeze" the event at different instances. A ruby pulsed
laser is an ideal source for such a purpose because its pulse duration is in the nanosecond
range. As a demonstration, the method was applied to a cantilever plate (7.6 cm x 7.6 cm x
2mm) under impact by a swinging ball from a height of 25.4 cm. A ruby laser with pulse

Fig. 3. Slope contours of a cantilever beam under tip load and comparison between theory and experimenl
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Fig. 4. Slope contours of a clamped circular plate under centrally applied concentrated load and
comparison between theory and experiment.

Fig. 5. Curvature contours of a cantilever beam under tip load and comparison between theory and
experiment.

duration of 60 nsec was used as the light source and the pictures of propagating slopes (shown
in Fig. 8) and curvatures (shown in Fig. 9) were taken at different ittstances (as given in the
figures) after the impact. (The impact signal was fed into a time delay system before triggering
the laser.) The gratings used were again of 3.94 and 19.69Ipcm, respectively. Since the method
measures either the absolute slope or absolute curvature, anyinitialnonftatness of the model
also appear as fringes; and this was why there were broad fringes at the beginning of the event.
The effect of these initial fringes can be eliminated by the ptoce<turesdiscussed in the next
section.

It is noted that the contrast of curvature fringes in the dYnanliccase is not as good as tht,lt itt
the static cases (Figs. 6 and 7). This is so because the total plate deflection at various stages of
wave propagation is not as large as in the static cases. However, the fringe positions are
nevertheless discemable if one recognizes the fact that tlier are essentially theloci of points of
intersection of shifted slope fringf:s.Fringe contrastclU! be improved if afi.nergrating is used
(so that there will be more slope fringes available for interference); This would, of course,
result in more initial slope fringes due to plate imperfections.
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Fig. 6. Curvature contours of a clamped circular plate Ill)der centraIly applied concentrated load and
comparison between theory and experiment.

Fig. 7. Slope and curvature contours along x and y directions of a clamped triangular plate under uniform
pressure.

DISCUSSION AND CONCLUSION

A simple method is proposed for generating slope and curvature contours of plates under
transverse bending. The only equipment needed are a pair of lenses, a monochromatic light
source and a few coarse gratings. The method requires that the model surface be specularly
reflective. This, however, is not really a serious restriction because of the fact that the natural
finishing of common materials such as Plexiglas is usually good enough. For more precise
applications one should, of course, polish the model surface. Or one could eliminate the initial
fringes due to the nonftatness of the plate by subtracting them from the final ones, either
through numerical calculation or through double' exposure. For the latter approach it is
necessary to introduce a mismatch fringe pattern first [28].

For a given ax the sensitivity of the method is directly proportional to pll for slope fringes
and (pIli for curvature fringes. In principle in order to have high sensitivity one would select a
lens with long focal length and a grating of fine pitch. However, what comes with fine gratings is
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Fig. 8. Propagating slope contours of a square cantilever beam under impact (numbers in ILSec).

150 200 40C 500

Fig. 9. Propagating curvature contours of square cantilever beam under impact (numbers In ILsec).

the diffraction effect which generates shifted multiple images. Thus a happy medium has to be
reached depending upon what is considered to be the tolerable shift of images. For slope
contouring it is the maximum shift at which no overlapping fringes are present; and for
curvature contouring it is the maximum shift that the error due to finite difference ap
proximation is acceptable. It can be shown that for a field lens of 61 cm focal length the usable
range of grating line density is about 4-8lpcm for slope contouring and 20--40 lpcm for
curvature contouring. The corresponding sensitivities are then on the order of 10-3 rad and
10-3 cm-t, respectively.

The sensitivity of the method for slope determination compares favorably with that of the
original Ligtenberg method[13], and is of the same order of magnitude as that of the later
versions[l6, 17]. However, these later versions usually employ gratings with line density one
order of magnitude higher and requires optical spatial filtering to render the fringes visible. The
proposed method is better than the Ligtenberg method in yet another aspect: its usage of light
energy is more economical rendering it more susceptible to high speed photography. The fact
that the method yields high sensitivity fringes directly without double exposure (as does the
Ligtenberg method) is perhaps its best asset. Of course the need of a field lens is also the
method's limitation in that one cannot employ large size models. Furthermore lens aberration
also contributes to its error if double exposure is not used.

Another source of error is the approximation used [i.e. f3 ~ ax in deriving eqn (15)]. For a
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lens of 12.7 cm in diameter and 61 cm in focal length, it can be shown that the maximum error in
fringe order for a 7.63 cm (3 in.) model is 4.2%.

The method also compares favorably with other slope contouring techniques. For example,
the Salet-Ikeda method[l8] employs a more complicated optical system in which a geometric
target has to be projected onto a mirror-surface model and then received via a pinhole viewing
system. The Moire methods of Theocaris [19,20) usually result in relatively inferior fringes
because of the very nature of Moire phenomenon. The method is complimentary to the laser
speckle methods of Hung [21), and Chiang and Jung[22] in that it can only be applied to
mirror-surface models whereas the speckle methods only to matte surface models.

The method's capability of real time contouring curvature in a full-field manner is an unique
feature as compared to other methods where either superposition or double exposure [23-25], or
a two-step procedure [26] is needed.

It should be noted that while the method is devised mainly for the purpose of experimentally
solving plate bending problems, it can be applied to other metrological problems as well.
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